中图分类号:
R944
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] IIJIMA S. Helical microtubules of graphitic carbon . Nature, 1991, 354(6348): 56-58.[2] IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter . Nature, 1993, 363(6430): 603-605.[3] JI S R, LIU C, ZHANG B, et al. Carbon nanotubes in cancer diagnosis and therapy . Biochim Biophys Acta, 2010, 1806(1): 29-35.[4] LI X M, FAN Y B, WATARI F. Current investigations into carhon nanotubes for biomedical application . Biomed Mater, 2010, 5(2): 022001.[5] ZHANG Y, BAI Y H, YAN B. Functionalized carhon nanotubes for potential medicinal application . Drug Discov Today, 2010, 15(11-12): 428-435.[6] MADLANI S Y, NADERI N, DISSANAYAKE O, et al. A new era of cancer treatment: Carbon nanotubes as drug delivery tools . Int J Nanomedicine, 2011, 6: 2963-2979.[7] ZHOU H Y, MU Q X, GAO N N, et al. A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Lett, 2008, 8(3): 859-865.[8] WICK P, MANSER P, LIMBACH L K, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity . Toxicology Letters, 2007, 168(2): 121-131.[9] KANG S, MAUTER M S, ELIMELECH M. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity . Environ Sci Technol, 2008, 42(19): 7528-7534. TIAN W, FAN X D, KONG J, et al. Novel supramolecular system of amphiphilic hyperbranched polymer with β-cyclodextrin and hyperbranched topography cavities: Synthesis and selective encapsulation . Polymer, 2010, 51(12): 2556-2564. SUN J T, HONG C Y, PAN C Y. Surface modification of carbon nanotubes with dendrimers or hyperbranched polymers . Polym Chem, 2011, 2(5): 998-1007. LIAO F, HOU Y J, ZENG X R. Research progress in application of hyperbranched polymer in coatings.Mater Rev(材料导报),2010,24(5):79-83. ADELI M, MIRAB N, ALAVIDJEH M S, et al. Carbon nanotubes-graft-polyglycerol: Biocompatible hybrid materials for nanomedicine . Polymer, 2009, 50(15): 3528-3536. ZHOU H Y, MU Q X, GAO N N, et al. A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response.Nano Lett, 2008, 8(3): 859-865. WICK P, MANSER P, LIMBACH L K, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity . Toxicology Letters, 2007, 168(2): 121-131. KANG S, MAUTER M S, ELIMELECH M. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity . Environ Sci Technol, 2008, 42(19): 7528-7534. SHI Q, YANG D, SU Y L, et al. Covalent functionalization of multi-walled carbon nanotubes by lipase . Journal of Nanoparticle Research, 2007, 9(6): 1205-1210. JOSHI A, PUNYANI S, BALE S S, et al. Nanotube-assisted protein deactivation . Nature Nanotechnology, 2008, 3(1): 41-45. WANG S, BAO H M, YANG P Y, et al. Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion . Anal Chim Acta, 2008, 612: 182-189.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}